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A method is presented for the exact numerical integration of acoustic radiation
integrals for a disc-shaped source in a mean #ow. The technique allows the
calculation of a harmonic of the acoustic "eld around the source and the study of
its variation with the parameters relevant to aircraft propeller noise. Results are
given for two sources representative of &&conventional'' and &&advanced'' aircraft
propellers at zero, takeo! and cruise Mach numbers. The structure of the "elds is
discussed and in particular the form of the transition from the near to the far "eld
and the circumstances under which the strong beaming pattern of supersonic
rotors becomes apparent.
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1. INTRODUCTION

Calculation of the acoustic "eld radiated by rotating sources is a problem of
interest in the prediction of noise from aircraft propellers and rotors. The main
techniques for such noise prediction are based on the Ffowcs Williams}Hawkings
equation [1] or the generalized treatment of Goldstein [2], an integral equation for
the sound radiated by an aerodynamic source region to some observer position.
For direct prediction of the time-record of the noise at a given point, the various
formulations of Farassat and co-workers [3}5] are among the best known, while
Hanson's methods have a similar importance for frequency-domain predictions
[6}8]. These methods involve integration over the propeller blade surface and so
have become feasible only as computing power has increased. They are unsuited to
the twin problems of quickly generating approximate solutions for initial design
and the investigation of the general properties of the whole acoustic "eld.

Over the recent years, a number of researchers have published methods, often
based on asymptotic analysis, which have been useful both for approximate
prediction and the study of the general properties of rotating sound "elds. The
asymptotic analyses have included the prediction methods of Parry and Crighton
for subsonic [9] and supersonic [10] rotors, Prentice's study of energy transport in
rotating "elds [11] and Chapman's study of the acoustic "eld of a rapidly rotating
source distribution [12]. This study was extended by Chapman [13] using
a combined analytical and numerical method which allows an e$cient, exact,
0022}460X/99/320353#22 $30.00/0 ( 1999 Academic Press
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evaluation of the acoustic "eld. This increased e$ciency makes it possible to
calculate the radiated sound at a large number of points so that the general
properties of the whole acoustic "eld can be calculated without recourse to the
approximations previously used, such as those of large observer distance or high
harmonic number. The form of transition from the acoustic near "eld to the far "eld
is thus highlighted, as is the form of the acoustic "eld in di!erent regions of space
such as the &&quiet zone'' of supersonic rotors. The predictions thus act as
con"rmation of the results of the asymptotic theories and as a useful set of results in
their own right. In this paper, one of the outstanding issues listed in reference [13],
the e!ect of forward motion of the source, is considered. This allows the method to
be useful in studying the structure of the sound "elds radiated by propellers in
#ight, a problem of industrial as well as purely scienti"c interest.

2. CALCULATION OF RADIATED SOUND

In this section, integrals for the pressure "eld radiated by a translating propeller
are derived. In the following section, a method is outlined for their e$cient
calculation, based on that of Chapman [13]. The propeller is modelled as a disc in
the plane z"0, of radius a, rotating with angular velocity X (Figure 1). The
reduction of the propeller to a disc assumes that the blades extend much less than
one acoustic wavelength along the propeller axis. This is a valid assumption for
straight blades of acoustically compact cross-section. The extension to blades of
non-compact axial extent would involve calculating interference e!ects between
regions at di!erent axial positions, which could be done using methods similar to
those presented here. It is further assumed that the hub can be ignored. In a real
propeller, the hub does not contribute to the radiated noise. Including this e!ect in
the data to be presented here would require subtracting a scaled version of the
acoustic "eld from the overall results. Since, the results are to be compared with the
previous results of Chapman [13] and since it is known that the noise of propellers
is dominated by the blade tip or by the sonic radius [9, 10], the hub has not been
modelled in this work.

Cylindrical co-ordinates are used with the observer at a position (r, h, z) and
(r
1
, h

1
) being the co-ordinates on the propeller disc. The #ight Mach number is

M
=

and the propeller either advances at speed cM
=

(the &&moving propeller'' case)
or operates in an axial #ow of this velocity (&&moving medium''), where c is the speed
of sound in the #uid. The observer is considered stationary in each case. The wave
equation to be solved for the acoustic pressure p is [14, 15], neglecting non-linear
terms,
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Figure 1. Propeller and observer co-ordinates.
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with o being the undisturbed #uid density. The propeller blade surface is assumed
symmetric and is speci"ed by the function f (x)"0. The #uid velocity normal to the
blade surface is v

n
and the surface exerts a force 1 per unit area on the #uid. Since

the propeller rotates at a constant velocity, the blade loading and geometry can be
decomposed into Fourier series in h

1
and the acoustic "eld due to each component

calculated separately. The coe$cients of the Fourier series for the geometry are
denoted eaf

n
(r
1
) (with e small) and the loading terms g

n
(r
1
). The surface normal

velocity v
n
, required for the thickness noise calculation is then given by

v
n
"!jnXf

n
. The blade loading is modelled as a unit pressure jump across the disc.

For the sake of brevity, the blade drag noise is not included here although it could
be calculated using the methods developed in this paper.

Two possible cases are considered in the calculations, the "rst being that of
a propeller advancing in stationary #uid with sound being radiated to a stationary
observer, the second where both propeller and observer are stationary in a uniform
#ow. The frequency-domain Green's function to be used in each case is that of
Garrick and Watkins [16], which is, for a harmonic source exp(!jut),

G"

e+kp
4nS

, with k"u/c. (2)

The phase and amplitude radii p and S have di!erent de"nitions depending on
whether the source is advancing or is stationary in a uniform #ow. In the case of



356 M. CARLEY
a source advancing into quiescent #uid, with the observer stationary,
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t)2]1@2, (3a)
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b"(1!M2
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and when the propeller and observer are both stationary in a uniform #ow,
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In the moving propeller case, co-ordinates are chosen such that the propeller
axial displacement is given by z"cM

=
t.

2.1. ACOUSTIC PRESSURE

The solution of equation (1) is given by the Ffowcs Williams}Hawkings
equations [1, 2, 15] as an integral over the source surface:
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with G(x, t; y, q) denoting the Green's function for observer position and time x and
t and source position and time y and q.

Inserting the Green's function, equation (2), and noting that all quantities vary as
exp(!jnXt), the sound radiated by the nth thickness and thrust modes is
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where h
1

has been transformed to h!h
1

with the corresponding change in the
amplitude radius
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The integrals have been non-dimensionalized by scaling lengths on the propeller
radius a and pressures on oc2. In the moving propeller case, the integral is
calculated at time t"0, at which time, the disc is passing through z"0. This
makes the integrals identical in each of the two possible cases to be calculated. The
result for loading noise is identical to that of Garrick and Watkins [16] except that
the complex conjugate must be taken.

3. NUMERICAL METHOD FOR ACOUSTIC CALCULATIONS

To examine the properties of the whole acoustic "eld, the integrals of the
previous section must be calculated for a large number of points to cover a region of
interest at adequate resolution. Direct numerical evaluation of the two-dimensional
integrals would take an unreasonably long time but the method of Chapman [13],
which renders the integrals one-dimensional by a change of co-ordinate system,
makes the calculation feasible.

3.1. REDUCTION TO ONE-DIMENSIONAL INTEGRALS

In a study of the acoustic "eld radiated by a stationary propeller, Chapman
introduces a technique for the reduction of the two-dimensional radiation integrals
to single integrals in a new co-ordinate system. The integrals are transformed from
the (r

1
, h

1
) co-ordinate system to the new system (r

2
, h

2
) (Figure 2). The co-

ordinates are based on lines parallel to the propeller axis at a distance r, the
&&sidelines'' of propeller noise measurements. From Figure 2,
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Figure 2. The new co-ordinate system for integration.



358 M. CARLEY
so that

r
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Taking the thickness noise term as an example, this gives a new integral,
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In the evaluation of J, the limits of integration are determined by the intersection of
a circle of radius r

2
with the propeller disc (Figure 3). There are "ve distinct

possibilities for this intersection, of which one is the trivial case where the circle of
radius r

2
does not contact the propeller disc. The remaining four cases are listed by

Chapman [13] and are shown in Figure 4.
For certain forms for f

n
(r
1
), the integral for J can be evaluated analytically and

only a one-dimensional integral need be performed numerically. In reference [13]
f
n
,1 and the calculation is performed for the case with no mean #ow, with

a recursive formula being given for J. In the case of a system with an axial mean
#ow, an identical method can be used. In the next sections, formulae for J are
derived which allow a polynomial representation of f

n
.

3.2. INTEGRAL REPRESENTATION FOR J

The starting point for the formulae for J is a complex integral representation
derived by combining expressions for exp ( jnh

1
) and r2

1
written as functions of
Figure 3. Sideline co-ordinate transformation.



Figure 4. Di!erent cases for determination of limits in integral representation of J. The limits are
determined by the intersection of a circle of radius r

2
(shown dashed) with a circle of radius r
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h
2

and r
2
. From Figure 3.

r
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r
k

(k#r
2
/r), (13)

and
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"
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2

k
(k#r/r

2
) (k#r

2
/r) (14)

with
k,e+h2.

These expressions allow an integral expression for J to be written for a source
distribution whose radial variation is expressed in even or odd powers of r

1
, for

even and odd harmonic numbers respectively. For this purpose a modi"ed notation
is introduced. The function J is replaced by a sum of functions J

n,p
where J

n,p
(r, r

2
)

is used to calculate the noise radiated by an acoustic mode of strength
rp
1
exp(!jnh

1
).

In the following sections, integral formulations for the odd and even harmonic
cases are given and are then used to develop exact, "nite series, representations for
the radiation functions in section 3.3. For numerical reasons, an in"nite series form
is also derived in section 3.4.

For n"2m, note that

r2qe~+2mh
1"(r e~+h1 )2m(r2)q~m
1 1 1



360 M. CARLEY
and from equation (13) and (14) one can immediately write the integral expression
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The cases of most interest for the evaluation of J
2m,2q

are those where q'0. Of
particular interest are those cases for q(m, the lower-order terms in a series
representation of the radial source variation.

Proceeding in the same manner as above, for n"2m#1 and for a series of terms
r2q`1
1

, the integral representation for J
2m`1,2q`1

is written
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For completeness, we also give the form of integrals for J
n,p

when n and p are not
both odd or both even:
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These integrals do not have the convenient closed-form solutions of J
2m,2p

and
J
2m`1,2p`1

but can be evaluated as in"nite series using the methods of section 3.4.
Since they will not be used for the acoustic "eld calculations of this paper, they will
not be considered further.

3.3. FINITE SERIES FOR J
n,p

The integral representations for J
n,p

given in equations (15) and (16) can be used
to derive exact formulae for the radiation functions. The case of even harmonic
number with q(m is considered "rst. Expanding equation (15),
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The integrands in this equation have a partial series expansion [17],
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Evaluating the integrals in k, this becomes
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and
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is replaced by G
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When q*m, the formula for J
2m,2q

is somewhat less involved,
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The same procedure can be carried out for n odd, giving, for q(m.
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and for q*m,
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At this stage, the radiated harmonic strength, for n odd or even and with a source
distribution expressed in a series of odd or even powers of r

1
, can be calculated

using the de"nitions of J
n,p

given in this section. There is, however, a numerical
di$culty associated with the calculation of J

n,p
when t is large, i.e. when the

observer position is very close to the propeller axis. This can be avoided using an
expansion of J

n,p
in an in"nite series in g.

3.4. INFINITE SERIES FOR J
n,p

When r@1, the "nite series formulae for J
n,p

may not give the correct answer due
to numerical errors in calculating the di!erence between large powers of t"r

2
/r.

To work around this problem, an expansion of J
n,p

in powers of g (i.e. inverse
powers of t) is used.
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For n even and q(m, using Leibnitz' rule for di!erentiation of a product [18],

J
2m,2q

"

r2qt2q
j2n P

k*
0

k
0

(1/k#g)m`q

(k#g)m~q

1
k

dk,

"r2qt2q
=
+
k/0

gk

k!
1
2n P

k*
0

k
0

dk

dgk

(1/k#g)m`q

(k#g)m~q

1
k K g/0

dk,

"!

r2qt2q
n

=
+
k/0

gk
k
+

i/.!9(0,k~m~q)

(!)iA
m!q#i!1

m!q!1 B

]A
m#q
k!i B

sin(2m#2i!k)h(0)
2

(2m#2i!k)
,

which can be rewritten

"!

r2qt2q
n

=
+
i/0
A
m!q#i!1

m!q!1 B (!g)i

]
k/m`q

+
k/0

A
m#q

k B
sin(2m#i!k)h(0)

2
(2m#i!k)

gk. (29)

This series converges for small g (large t) and, more importantly, is not subject to
the numerical di$culties involved in calculating J

2m,2q
directly from the formulae

of the previous sections. Finally, for n odd,
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3.5. CASES 1 AND 2

An &intriguing' result of Chapman's paper [13] is that for case 2 of Figure 3,
J,0. This result can be recovered from the integral representation of J

n,q
, (15). For

cases 1 and 2 of Figure 3, the contour of integration is the whole unit circle,
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There are two possible singularities within the contour of integration, at the origin
and at k"!g. The case when the origin is the only singularity corresponds to
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case 1 of Figure 3. Case 2 corresponds to g(1 (i.e., t'1). For q(!m, the
singularity at the origin disappears and J

n,q
,0 for case 1. In case 2, when

!m)q(m, the value of the integral is given by the sum of the residues at the
singularities. These can be found from the partial fraction expansion given above
with only A

1
and B

1
from equations (21) and (22) required. Then, since A

1
,!B

1
,

the integral is identically equal to zero, reproducing and extending Chapman's
previous result. When q*m, only the singularity at the origin remains and the
integral is "nite in both cases 1 and 2.

4. RESULTS

Programs have been written to evaluate equations (6) and (7) for a range of tip
and in#ow Mach numbers. Two basic test cases have been chosen, for propellers of
tip speed M

t
"0)7 and 1)05. These parameters roughly represent a &&conventional''

and an &&advanced'' propeller. Flight Mach numbers M
=
"0, 0)2 were chosen for

both propellers (0)2 being a reasonable "gure for takeo! ) and M
=
"0)7 for the

conventional propeller and M
=
"0)8 for the advanced. The acoustic "eld was

calculated in each case over the region 0)r)3, !3)z)3. The harmonic
number was set to n"16 for comparison with Chapman's stationary disc results
[13] and the thickness and loading terms were assumed independent of radius
under all operating conditions.

4.1. NUMERICAL METHOD

A simple program was written to evaluate the function J
n,p

of section 3 for use in
the integration of equations (32) and (33). The calculated values of J

n,0
were

checked against results from Chapman's method [13] and values for general p were
tested against direct numerical integration of equation (15).

After transformation to (r
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) co-ordinates, equations (6) and (7) become
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At this point, the physical reason for the e$ciency of the adopted procedure can
be noted. The new co-ordinate system (r

2
, h

2
) is one in which all points at a given

r
2

are also at the same phase and amplitude radius from the observation point. In
e!ect, the integration in h

2
gathers the contribution from each point at a given

value of S and p and the integration in r
2
collects the individual contributions to the

overall integral.
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The sound "elds were calculated on a meridional grid of 201 points in r and 402
points in z. In integrating equations (32) and (33) it was possible to calculate the
acoustic "eld for all six operating conditions simultaneously. The method adopted
was to "x the value of r and then calculate J

n,0
(r, r

2
), r

2
being sampled over the

relevant range of integration. This was then stored for reuse at each value of z at the
given value of r and at each of the six operating conditions. In this manner, it was
possible to calculate the 6]80 802 "eld points in about 16 h of real time (i.e., not
CPU time) on a personal computer. The calculated "eld data were then spot-
checked by calculating the harmonic strength at selected points using a full
two-dimensional integration.

4.2. ACOUSTIC FIELDS

The two sets of data (thickness and loading) have been plotted in Figures 5}8 on
two di!erent sections through the acoustic "eld, one across the propeller axis at
z"0 (thickness) or z"0)1 (loading), the other a meridional section h"0. In each
case, the real part of the integral is plotted, this corresponding to the instantaneous
acoustic pressure due to the source harmonic under consideration. Due to the large
variation in "eld strength, logarithmically spaced values have been chosen for the
contours. Negative values have been omitted from Figures 5 and 6 as they can be
recovered by rotation through n/n radians. In the meridional plots, Figures 7 and 8,
the negative contours are shown as dashed lines.

Looking "rst at the thickness noise of the subsonic tip speed propeller [Figures
5(a}c) and 7(a}c)], the form of the sound "eld for M

=
"0 is the same as that for

reference [13]; the near "eld is made up of alternating regions of positive and
negative pressure forming segments of an &&orange'' which undergoes a transition
into the far"eld radiation zone with its spiral bands clearly visible in Figure 5(a). As
in previously published results, the wavelength in the far "eld is 2n/M

t
n. The

transition from the near to the far "eld begins at the sonic radius 1/M
t
and is

completed half an acoustic wavelength further out, in agreement with the de"nition
of reference [13] where the radiation zone is taken as beginning a quarter
wavelength inboard of the I"0 contour. The physical structure of the "eld is one
of a near "eld which allows a small amount of radiation to &leak' into the far "eld
across the curved boundary. The object of this paper is to examine how this
acoustic "eld develops as a mean #ow is applied to the system.

Figures 5(b) and 7(b) show the e!ect of adding a mean #ow of M
=
"0)2,

a typical take-o! condition. The #ow in each case is from right to left in the
meridional plane or, alternatively, the propeller moves from left to right relative to
a stationary observer. The "rst point to note is that the z"0 section has hardly
changed. The blade-tip helical Mach number is now 0)73 so that the sonic radius
has moved inboard to 1)40 but remains outside the propeller disc. The whole
propeller is still inside the near "eld and the acoustic energy must still tunnel across
the far "eld boundary. The meridional section on the other hand shows a marked
alternation. The near"eld boundary has been squashed against the front of the disc
and stretched out behind it, a trend which continues as the in#ow Mach number is
increased to 0)7.



Figure 5. Thickness noise "elds, z"0. (a) M
t
"0)7, M

=
"0, contour levels 10~5, 10~4, 10~3;

(b) M
t
"0)7, M

=
"0)2, contour levels 10~5, 10~4, 10~3; (c) M

t
"0)7, M

=
"0)7, contour levels

10~4, 10~3, 10~2; (d) M
t
"1)05, M

=
"0, contour levels 10~4, 10~3, 10~2; (e) M

t
"1)05, M

=
"0)2,

contour levels 10~4, 10~3, 10~2; (f ) M
t
"1)05, M

=
"0)8, contour levels 10~2, 10~1.
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Figure 6. Loading noise "elds, z"0)1. (a) M
t
"0)7, M

=
"0, contour levels 10~4, 10~3, 10~2;

(b) M
t
"0)7, M

=
"0)2, contour levels 10~4, 10~3, 10~2; (c) M

t
"0)7, M

=
"0)7, contour levels

10~2, 10~1; (d) M
t
"1)05, M

=
"0, contour levels 10~3, 10~2, 10~1; (e) M

t
"1)05, M

=
"0)2,

contour levels 10~3, 10~2, 10~1; (f ) M
t
"1)05, M

=
"0)8, contour levels 10~1, 100.
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Figure 7. Thickness noise "elds, h"0. (a) M
t
"0)7, M

=
"0, contour levels $10~6, $10~5,

$10~4, $10~3; (b) M
t
"0)7, M

=
"0)2, contour levels $10~6, $10~5, $10~4, $10~3;

(c) M
t
"0)7, M

=
"0)7, contour levels $10~6, $10~5, $10~4, $10~3; (d) M

t
"1)05, M

=
"0,

contour levels $10~5, $10~4, $10~3, $10~2; (e) M
t
"1)05, M

=
"0)2, contour levels $10~5,

$10~4, $10~3, $10~2; (f ) M
t
"1)05, M

=
"0)8, contour levels $10~4, $10~3, $10~2.
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Figure 7. Continued.
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Now, Figure 5(c), the tip Mach number is 0)99 and the Mach radius is at 1)02,
just outside the propeller disc. The transition to the far "eld now occurs much
closer to the propeller tip and the radiation mechanism is more e$cient, less energy



Figure 8. Loading noise "elds, h"0. (a) M
t
"0)7, M

=
"0, contour levels $10~5, $10~4,

$10~3; (b) M
t
"0)7, M

=
"0)2, contour levels $10~5, $10~4, $10~3; (c) M

t
"0)7, M

=
"0)7,

contour levels , $10~4, $10~3, $10~2; (d) M
t
"1)05, M

=
"0, contour levels $10~4, $10~3,

$10~2; (e) M
t
"1)05, M

=
"0)2, contour levels $10~4, $10~3, $10~2; (f ) M

t
"1)05,

M
=
"0)8, contour levels $10~2, $10~1.
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Figure 8. Continued.
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being lost in &&tunnelling'' into the far "eld. The meridional section shows the
distortion of the near"eld boundary with the same squashing ahead of the disc and
stretching behind it. Furthermore, the far"eld contours show the Doppler shifting
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of the acoustic wavelength with angle from the positive z-axis, an e!ect not readily
apparent in the M

=
"0)2 case.

The acoustic "eld for the supersonic tip propeller at zero advance velocity
[Figures 5(d) and 7(d)] has a similar form. The sonic radius is at r"0)95 so that the
blade tips only enter the transition region between the near and far "elds. The z"0
section is thus quite similar to that of the cruise condition for the subsonic tip
propeller. Obviously, the meridional section shows the near "eld boundary to be
symmetric about z"0 and again the far-"eld wavelength is 2n/M

t
n. At this only

slightly supersonic operating condition, the strong beaming pattern characteristic
of a very high tip speed rotor is not yet apparent and the radiated "eld is more like
that of a slightly subsonic propeller. When a low forward velocity is applied
[M

=
"0)2, Figure 5(e) and 7(e)], the same alteration of the noise "eld occurs as in

the subsonic tip speed case. The near"eld boundary is squashed against the front of
the propeller disc and stretched out behind it and there is a small variation in the
far"eld acoustic wavelength with directivity angle. The z"0 section however is
quite similar to that in the no-#ow case since the sonic radius is at r"0)93, less
than a quarter wavelength from the propeller tip so that the whole disc still lies
inside the near "eld.

It is only when the in#ow velocity is increased to a Mach number of 0)8 that the
classic &&supersonic rotor'' features become apparent [Figures 5(f ) and 7(f )].
The sonic radius is now at r"0)57, more than an acoustic wavelength from the
propeller tip, so that part of the propeller sticks out into the radiation zone.
The strong beaming pattern characteristic of high-speed rotors is now obvious in
the meridional section [Figure 5(f )]. The transition to the far "eld, the radiation
zone, now begins well inside the disc radius r"1 and this has a strong in#uence on
the directivity pattern. The &&orange'' structure has disappeared to be replaced by
a form reminiscent of that of Chapman's result for a stationary disc with M

t
"2.

Viewing the thickness noise "gures together with those for M
t
"2, M

=
"0 in

reference [13], it appears that the fundamental e!ect at work for the acoustic "eld
characteristic of a supersonic rotor to make itself known, the propeller tip must
stick out into the radiation zone with the boundary of that zone being a distance of
order one wavelength past the sonic radius. The calculated sonic radius in this case
includes the propeller advance velocity.

Unsurprisingly, the trends in the loading noise "elds (Figures 6 and 8) follow
closely those of the thickness noise data but the antisymmetry of the "eld about
z"0 in the zero-#ow case allows a slightly di!erent examination of the results. For
M

=
"0, the "eld is zero on z"0, outside the propeller disc radius. The contours

have identical shapes on either side of the plane but with opposite signs. As the
in#ow Mach number increases, the excursions of the contours across the plane give
an indication of the manner in which the "eld is changing. Since negative contours
are shown with a di!erent line type to positive, this is especially obvious in the
contour plots.

For both tip Mach numbers, even the addition of a mean #ow as slow as
M

=
"0)2 causes a large change in the meridional section [Figure 8(b, e)]. While

the distortion of the contours and the near"eld boundary is the same as in the
thickness noise case, the form of this distortion is highlighted. The same contour
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levels have been used in Figures 8(b, e) as in (a, d) respectively to facilitate
comparison. Identifying the corresponding contours in each case, the "eld ahead of
the disc can be seen stretching backwards. Near the propeller axis, it is squashed
close to the disc but at larger radii it intrudes into the negative z region. There is no
corresponding excursion of the former negative z contours into the upstream zone.
From the loading noise "gures, the e!ect of the mean #ow is one of stretching the
acoustic "eld in a downstream direction.

5. CONCLUSIONS

A method has been presented for the calculation of the three-dimensional
structure of the sound "eld around spinning sources, extending a previous analysis
by Chapman [13]. For the model problem considered, the e!ect of the main
parameters in#uencing the radiated noise, blade number, rotation speed and
advance speed, can be studied.

The method has been applied to two sources representative of a &&conventional''
(subsonic) propeller and of an &&advanced'' (supersonic) propeller and their noise
"elds have been studied as functions of advance velocity which has been varied
from zero to a nominal cruise condition. For the subsonic propeller, the structure of
the "eld with an imposed #ow is similar to that seen in the zero-velocity case with
a near "eld composed of segments arranged like those of an orange and a small
amount of energy tunnelling into the far "eld across the near"eld boundary. The
main change due to the imposition of a mean #ow is the alteration of the shape of
the near"eld boundary which is stretched downstream, an e!ect most obvious in
the loading noise case. The noise "eld of the supersonic propeller is quite similar in
character to that of the subsonic propeller for the low advance Mach numbers
where it does not exhibit the strong beaming of very high-speed propellers. It is
only at the cruise condition that the strong directivity seen, for example, in the
M

t
"2 case of Chapman's paper [13].
These e!ects can be explained in terms of the structure of the propeller near "eld.

If the boundary of the near "eld is taken to be approximately one acoustic
wavelength outside the sonic radius then the condition for strong radiation is that
the propeller blade tips stick out into the far "eld. Viewing the system in terms of
radiation tunnelling across the near"eld boundary, the radiated noise can be
thought of in terms of the energy lost as the noise passes into the radiation zone. As
the propeller Mach number, including axial motion, increases, the sonic radius
reduces and the near "eld shrinks, For high enough tip Mach numbers, the blades
penetrate the far "eld and no energy is lost in tunnelling, giving the strong
directivity pattern characteristic of supersonic propellers. The observations of
Chapman [13], based on a stationary disc model of the propeller, have been
extended to the important case of a disc in a mean #ow and it has been found that
the same insights are valid.
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